Abstract
At present, the ergosterol and acetate-to-ergosterol techniques are generally considered to be the methods of choice to quantify fungal biomass, growth rate, and productivity under natural conditions. Both methods rely on the accurate isolation and quantification of ergosterol, a major membrane component of eumycotic fungi. Taking advantage of the solid-phase extraction (SPE) technique, we present a novel method to determine the ergosterol concentration in lipid extracts derived from plant tissues and dead organic matter colonized by fungi. In this method, a primary alkaline extract is acidified and passed through a reversed-phase (C(inf18)) SPE column. The column is then washed with an alkaline methanol-water solution to eliminate interfering substances and increase pH and is thoroughly dried in air. Ergosterol is eluted with alkaline isopropanol. This eluting solvent was chosen to produce a strongly basic pH of the final extract and thus confer stability on the ergosterol molecule before high-performance liquid chromatography analysis. The recovery of ergosterol from plant tissues and the O(infhf) horizon of a woodland soil ranged from 85 to 98%, and the overall extraction efficiency was similar to that obtained by a conventional procedure involving liquid-liquid extraction. Potential pitfalls of ergosterol analysis by SPE include (i) insufficient acidification before sample loading on the extraction column, resulting in a poor affinity of ergosterol for the sorbent; (ii) incomplete drying of the sorbent bed before the elution step; and (iii) chemical breakdown of ergosterol after elution, which was found to be related to a low pH of the final extract and a high concentration of matrix compounds. When these pitfalls are avoided, SPE is an attractive alternative to existing methods of ergosterol analysis of environmental samples.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
198 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献