Regulation of carbohydrate transport activities in Salmonella typhimurium: use of the phosphoglycerate transport system to energize solute uptake

Author:

Saier M H,Feucht B U

Abstract

The phosphoglycerate transport system was employed to supply energy-depleted, lysozyme-treated Salmonella typhimurium cells with a continuous intracellular source of phosphoenolpyruvate. When the cells had been induced to high levels of the phosphoglycerate transport system, a low extracellular concentration of phosphoenolpyruvate (0.1 mM) half maximally stimulated uptake of methyl alpha-glucoside via the phosphoenolpyruvate:sugar phosphotransferase system. If the phosphoglycerate transport system was not induced before energy depletion, 100 times this concentration of phosphoenolpyruvate was required for half-maximal stimulation. Phosphoenolpyruvate could not be replaced by other energy sources if potassium fluoride (an inhibitor of enolase) was present. Inhibition of [14C]-glycerol uptake into energy-depleted cells by methyl alpha-glucoside was demonstrated. A concentration of phosphoenolpyruvate which stimulated methyl alpha-glucoside accumulation counteracted the inhibitory effect of the glucoside. In the presence of potassium fluoride, phosphoenolpyruvate could not be replaced by other energy sources. Inhibition of glycerol uptake by methyl alpha-glucoside in intact untreated cells was also counteracted by phosphoenolpyruvate, but several energy sources were equally effective; potassium fluoride was without effect. These and other results were interpreted in terms of a mechanism in which the relative proportions of the phosphorylated and nonphosphorylated forms of a cell constituent influence the activity of the glycerol transport system.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference18 articles.

1. Regulation of carbohydrate permeases and adenylate cyclase in Escherichia coli. Studies with mutant strains in which enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system is thermolabile;Castro L;J. Biol. Chem.,1976

2. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli;Kaback H. R.;J. Biol. Chem.,1968

3. Sugar transport. I. Isolation of a phosphotransferase system from Escherichia coli;Kundig W.;J. Biol. Chem.,1971

4. Sugar transport. II. Characterization of constitutive membrane-bound enzymes II of the Escherichia coli phosphotransferase system;Kundig W.;J. Biol. Chem.,1971

5. The genetics of bacterial transport systems. Annu;Lin E. C. C.;Rev. Genet.,1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3