Acute Overexpression of Myc in Intestinal Epithelium Recapitulates Some but Not All the Changes Elicited by Wnt/β-Catenin Pathway Activation

Author:

Finch Andrew J.1,Soucek Laura1,Junttila Melissa R.1,Swigart Lamorna Brown1,Evan Gerard I.1

Affiliation:

1. Department of Pathology and UCSF Helen Diller Family Comprehensive Cancer Center, 513 Parnassus Avenue, San Francisco, California 94143-0502

Abstract

ABSTRACT The Myc transcription factor is a potent inducer of proliferation and is required for Wnt/β-catenin signaling in intestinal epithelium. Since deregulation of the Wnt/β-catenin pathway is a prerequisite for nonhereditary intestinal tumorigenesis, we asked whether activation of Myc recapitulates the tumorigenic changes that are driven by constitutive Wnt/β-catenin pathway signaling following adenomatous polyposis coli (APC) inactivation. Using mice in which expression of MycER TAM , a reversibly switchable form of Myc, is expressed transgenically in intestinal epithelium, we define the acute changes that follow Myc activation as well as subsequent deactivation. Myc activation reversibly recapitulates many, but not all, aspects of APC inactivation, including increased proliferation and apoptosis and loss of goblet cells. However, whereas APC inactivation induces redistribution of Paneth cells, direct Myc activation triggers their rapid attrition. Moreover, direct Myc activation engages the ARF/p53/p21 cip1 tumor suppressor pathway, whereas deregulation of Wnt/β-catenin signaling does not. These observations illustrate key differences in oncogenic impact in intestinal epithelium of direct Myc activation and indirect Myc activation via the Wnt/β-catenin pathway. Furthermore, the in situ dedifferentiation of mature goblet cells that Myc induces indicates a novel cross talk between the Wnt/β-catenin and Notch signaling pathways.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3