Global and Targeted Lipid Analysis of Gemmata obscuriglobus Reveals the Presence of Lipopolysaccharide, a Signature of the Classical Gram-Negative Outer Membrane

Author:

Mahat Rajendra1,Seebart Corrine2,Basile Franco1,Ward Naomi L.2

Affiliation:

1. Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA

2. Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA

Abstract

ABSTRACT Planctomycete bacteria possess many unusual cellular properties, contributing to a cell plan long considered to be unique among the bacteria. However, data from recent studies are more consistent with a modified Gram-negative cell plan. A key feature of the Gram-negative plan is the presence of an outer membrane (OM), for which lipopolysaccharide (LPS) is a signature molecule. Despite genomic evidence for an OM in planctomycetes, no biochemical verification has been reported. We attempted to detect and characterize LPS in the planctomycete Gemmata obscuriglobus . We obtained direct evidence for LPS and lipid A using electrophoresis and differential staining. Gas chromatography-mass spectrometry (GC-MS) compositional analysis of LPS extracts identified eight different 3-hydroxy fatty acids (3-HOFAs), 2-keto 3-deoxy- d -manno-octulosonic acid (Kdo), glucosamine, and hexose and heptose sugars, a chemical profile unique to Gram-negative LPS. Combined with molecular/structural information collected from matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS analysis of putative intact lipid A, these data led us to propose a heterogeneous hexa-acylated lipid A structure (multiple-lipid A species). We also confirmed previous reports of G. obscuriglobus whole-cell fatty acid (FA) and sterol compositions and detected a novel polyunsaturated FA (PUFA). Our confirmation of LPS, and by implication an OM, in G. obscuriglobus raises the possibility that other planctomycetes possess an OM. The pursuit of this question, together with studies of the structural connections between planctomycete LPS and peptidoglycans, will shed more light on what appears to be a planctomycete variation on the Gram-negative cell plan. IMPORTANCE Bacterial species are classified as Gram positive or negative based on their cell envelope structure. For 25 years, the envelope of planctomycete bacteria has been considered a unique exception, as it lacks peptidoglycan and an outer membrane (OM). However, the very recent detection of peptidoglycan in planctomycete species has provided evidence for a more conventional cell wall and raised questions about other elements of the cell envelope. Here, we report direct evidence of lipopolysaccharide in the planctomycete G. obscuriglobus , suggesting the presence of an OM and supporting the proposal that the planctomycete cell envelope is an extension of the canonical Gram-negative plan. This interpretation features a convoluted cytoplasmic membrane and expanded periplasmic space, the functions of which provide an intriguing avenue for future investigation.

Funder

NSF | BIO | Division of Molecular and Cellular Biosciences

HHS | NIH | National Center for Research Resources

NSF | MPS | Division of Chemistry

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3