Characterization of the multigene family encoding the mouse S16 ribosomal protein: strategy for distinguishing an expressed gene from its processed pseudogene counterparts by an analysis of total genomic DNA.

Author:

Wagner M,Perry R P

Abstract

Two genes from the family encoding mouse ribosomal protein S16 were cloned, sequenced, and analyzed. One gene was found to be a processed pseudogene, i.e., a nonfunctional gene presumably derived from an mRNA intermediate. The other S16 gene contained introns and had exonic sequences identical to those of a cloned S16 cDNA. The expression of this gene was demonstrated by Northern blot analysis of nuclear poly(A)+ RNA with cDNA and unique sequence intron probes. Each S16 intron contains a well-preserved remnant of the TACTAAC motif, which is ubiquitous in yeast introns and known to play a critical role in intron splicing. A sequence comparison with two other mouse ribosomal protein genes analyzed in our laboratory, L30 and L32, revealed common structural features which might be involved in the control and coordination of ribosomal protein gene expression. These include the lack of a canonical TATA box in the -20 to -30 region and a remarkably similar 12-nucleotide pyrimidine sequence (CTTCCYTYYTC) that spans the cap site and is flanked by C + G-rich sequences. The nature of the other members of the S16 family was evaluated by three types of experiment: a DNase I sensitivity analysis to measure the extent of chromatin condensation; an analysis of the thermal stability of cDNA-gene hybrids to estimate the extent of divergence of each gene sequence from that of the expressed gene; and a restriction fragment analysis which distinguishes intron-containing genes from intronless processed genes. The results of these analyses show that all genes except the expressed S16 gene are in a condensed chromatin configuration associated with transcriptional quiescence; that most of the genes within the S16 family have sequences greater than 7% divergent from the expressed S16 gene; and that at least 7 of the 10 S16 genes lack introns. We conclude that the ribosomal protein S16 multigene family contains one expressed intron-containing gene and nine inactive pseudogenes, most or all of which are of the processed type.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3