A LuxR Homolog in a Cottonwood Tree Endophyte That Activates Gene Expression in Response to a Plant Signal or Specific Peptides

Author:

Schaefer Amy L.1,Oda Yasuhiro1,Coutinho Bruna Goncalves1,Pelletier Dale A.2,Weiburg Justin1,Venturi Vittorio3,Greenberg E. Peter1,Harwood Caroline S.1ORCID

Affiliation:

1. University of Washington, Seattle, Washington, USA

2. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

3. International Centre for Genetic Engineering and Biotechnology, Trieste, Italy

Abstract

ABSTRACT Homologs of the LuxR acyl-homoserine lactone (AHL) quorum-sensing signal receptor are prevalent in Proteobacteria isolated from roots of the Eastern cottonwood tree, Populus deltoides . Many of these isolates possess an orphan LuxR homolog, closely related to OryR from the rice pathogen Xanthomonas oryzae . OryR does not respond to AHL signals but, instead, responds to an unknown plant compound. We discovered an OryR homolog, PipR, in the cottonwood endophyte Pseudomonas sp. strain GM79. The genes adjacent to pipR encode a predicted ATP-binding cassette (ABC) peptide transporter and peptidases. We purified the putative peptidases, PipA and AapA, and confirmed their predicted activities. A transcriptional pipA-gfp reporter was responsive to PipR in the presence of plant leaf macerates, but it was not influenced by AHLs, similar to findings with OryR. We found that PipR also responded to protein hydrolysates to activate pipA-gfp expression. Among many peptides tested, the tripeptide Ser-His-Ser showed inducer activity but at relatively high concentrations. An ABC peptide transporter mutant failed to respond to leaf macerates, peptone, or Ser-His-Ser, while peptidase mutants expressed higher-than-wild-type levels of pipA-gfp in response to any of these signals. Our studies are consistent with a model where active transport of a peptidelike signal is required for the signal to interact with PipR, which then activates peptidase gene expression. The identification of a peptide ligand for PipR sets the stage to identify plant-derived signals for the OryR family of orphan LuxR proteins. IMPORTANCE We describe the transcription factor PipR from a Pseudomonas strain isolated as a cottonwood tree endophyte. PipR is a member of the LuxR family of transcriptional factors. LuxR family members are generally thought of as quorum-sensing signal receptors, but PipR is one of an emerging subfamily of LuxR family members that respond to compounds produced by plants. We found that PipR responds to a peptidelike compound, and we present a model for Pip system signal transduction. A better understanding of plant-responsive LuxR homologs and the compounds to which they respond is of general importance, as they occur in dozens of bacterial species that are associated with economically important plants and, as we report here, they also occur in members of certain root endophyte communities.

Funder

Department of Energy (BER) Genomic Science Program

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3