Phenotypic Evolution of Therapeutic Salmonella enterica Serovar Typhimurium after Invasion of TRAMP Mouse Prostate Tumor

Author:

Choe Elizabeth12,Kazmierczak Robert A.23,Eisenstark Abraham23

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

2. Cancer Research Center, Columbia, Missouri, USA

3. University of Missouri—Columbia, Columbia, Missouri, USA

Abstract

ABSTRACT Salmonella has been of interest in cancer research due to its intrinsic ability to selectively target and colonize within tumors, leading to tumor cell death. Current research indicates promising use of Salmonella in regular administrations to remove tumors in mouse models while minimizing toxic side effects. However, selection of mutants during such long-term tumor colonization is a safety concern, and understanding selection of certain phenotypes within a tumor is an important consideration in predicting the long-term success of bacterium-based cancer treatment strategies. Thus, we have made an initial examination of selected phenotypes in a therapeutic Salmonella enterica serovar Typhimurium population developed from an archival wild-type LT2 strain and intraperitoneally injected into a 6-month-old TRAMP (transgenic adenocarcinoma of mouse prostate) mouse. We compared the original injected strain to isolates recovered from prostate tumors and those recovered from the spleen and liver of non-tumor-bearing TRAMP mice through phenotypic assessments of bacteriophage susceptibility, motility, growth rates, morphology, and metabolic activity. Tumor isolate traits, particularly the loss of wild-type motility and flagella, reflect the selective pressure of the tumor, while the maintenance of bacteriophage resistance indicates no active selection to remove this robust trait. We posit that the Salmonella population adopts certain strategies to minimize energy consumption and maximize survival and proliferation once within the tumor. We find these insights to be nonnegligible considerations in the development of cancer therapies involving bacteria and suggest further examinations into the evolution of therapeutic strains during passage through tumors. IMPORTANCE Salmonella is of interest in cancer research due to its intrinsic abilities to selectively target, colonize, and replicate within tumors, leading to tumor cell death. However, mutation of strains during long-term colonization within tumors is a safety concern, and understanding their evolution within a tumor is an important consideration in predicting the long-term success of bacterium-based cancer treatment strategies. Thus, we have made an initial examination of phenotypically diverse Salmonella colonies recovered from a therapeutic Salmonella strain that we developed and injected into prostate tumor-bearing mice. We compared the bacteriophage susceptibility, motility, growth rates, morphology, and metabolic activity of the original therapeutic strain to those of strains recovered from prostate tumors of tumor-bearing mice and the liver and spleen of non-tumor-bearing mice. Our results suggest that the Salmonella population adopts certain strategies to minimize energy consumption and maximize survival and proliferation once within the tumor, leading to phenotypic changes in the strain.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Reference33 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3