Global Adaptation to a Lipid Environment Triggers the Dormancy-Related Phenotype of Mycobacterium tuberculosis

Author:

Rodríguez Juan G.1,Hernández Adriana C.1,Helguera-Repetto Cecilia2,Aguilar Ayala Diana2,Guadarrama-Medina Rosalina2,Anzóla Juan M.1,Bustos Jose R.1,Zambrano María M.1,González-y-Merchand Jorge2,García María J.3,Del Portillo Patricia1

Affiliation:

1. Departamento de Biotecnología Molecular y Genética Molecular, Corporación CorpoGen, Bogotá, Colombia

2. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico Distrito Federal

3. Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain

Abstract

ABSTRACT Strong evidence supports the idea that fatty acids rather than carbohydrates are the main energy source of Mycobacterium tuberculosis during infection and latency. Despite that important role, a complete scenario of the bacterium’s metabolism when lipids are the main energy source is still lacking. Here we report the development of an in vitro model to analyze adaptation of M. tuberculosis during assimilation of long-chain fatty acids as sole carbon sources. The global lipid transcriptome revealed a shift toward the glyoxylate cycle, the overexpression of main regulators whiB3 , dosR , and Rv0081, and the increased expression of several genes related to reductive stress. Our evidence showed that lipid storage seems to be the selected mechanism used by M. tuberculosis to ameliorate the assumed damage of reductive stress and that concomitantly the bacilli acquired a slowed-growth and drug-tolerant phenotype, all characteristics previously associated with the dormant stage. Additionally, intergenic regions were also detected, including the unexpected upregulation of tRNAs that suggest a new role for these molecules in the acquisition of a drug-tolerant phenotype by dormant bacilli. Finally, a set of lipid signature genes for the adaptation process was also identified. This in vitro model represents a suitable condition to illustrate the participation of reductive stress in drugs’ activity against dormant bacilli, an aspect scarcely investigated to date. This approach provides a new perspective to the understanding of latent infection and suggests the participation of previously undetected molecules. IMPORTANCE Mycobacterium tuberculosis establishes long-lasting highly prevalent infection inside the human body, called latent tuberculosis. The known involvement of fatty acids is changing our understanding of that silent infection; however, question of how tubercle bacilli globally adapt to a lipid-enriched environment is still an unanswered. With the single change of providing fatty acids as carbon sources, the bacilli switch on their program related to dormant stage: slowed growth, accumulation of lipid bodies, and development of drug tolerance. In this stage, unexpected and previously unknown participants were found to play putatively important roles during the process. For the first time, this work compares the global transcriptomics of bacteria by using strand-specific RNA sequencing under two different growth conditions. This study suggests novel targets for the control of tuberculosis and provides a new straightforward in vitro model that could help to test the activity of drugs against dormant bacilli from a novel perspective.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3