Plasminogen Binding and Activation by Mycoplasma fermentans

Author:

Yavlovich Amichai1,Higazi Abd A.-R.2,Rottem Shlomo1

Affiliation:

1. Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School,1 and

2. Department of Clinical Biochemistry, Hadassah Hospital, Mount Scopus,2Jerusalem, Israel

Abstract

ABSTRACT The binding of plasminogen to Mycoplasma fermentans was studied by an immunoblot analysis and by a binding assay using iodine-labeled plasminogen. The binding of 125 I-labeled plasminogen was inhibited by unlabeled plasminogen, lysine, and lysine analog ɛ-aminocaproic acid. Partial inhibition was obtained by a plasminogen fragment containing kringles 1 to 3 whereas almost no inhibition was observed with a fragment containing kringle 4. Scatchard analysis revealed a dual-phase interaction, one with a dissociation constant ( k d ) of 0.5 μM and the second with a k d of 7.5 μM. The estimated numbers of plasminogen molecules bound were calculated to be 110 and 790 per cell, respectively. Autoradiograms of ligand blots containing M. fermentans membrane proteins incubated with 125 I-labeled plasminogen identified two plasminogen-binding proteins of about 32 and 55 kDa. The binding of plasminogen to M. fermentans enhances the activation of plasminogen to plasmin by the urokinase-type plasminogen activator (uPA), as monitored by measuring the breakdown of chromogenic substrate S-2251. Enhancement was more pronounced with the low-molecular-weight and the single-chain uPA variants, known to have low plasminogen activator activities. The binding of plasminogen also promotes the invasion of HeLa cells by M. fermentans . Invasion was more pronounced in the presence of uPA, suggesting that the ability of the organism to invade host cells stems not only from its potential to bind plasminogen but also from the activation of plasminogen to plasmin.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3