Reduced Virulence of a Bordetella bronchiseptica Siderophore Mutant in Neonatal Swine

Author:

Register Karen B.1,Ducey Thomas F.2,Brockmeier Susan L.1,Dyer David W.2

Affiliation:

1. Respiratory Diseases of Livestock Research Unit, USDA Agricultural Research Service National Animal Disease Center, Ames, Iowa 50010,1 and

2. Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731902

Abstract

ABSTRACT One means by which Bordetella bronchiseptica scavenges iron is through production of the siderophore alcaligin. A nonrevertible alcaligin mutant derived from the virulent strain 4609, designated DBB25, was constructed by insertion of a kanamycin resistance gene into alcA , one of the genes essential for alcaligin biosynthesis. The virulence of the alcA mutant in colostrum-deprived, caesarean-delivered piglets was compared with that of the parent strain in two experiments. At 1 week of age, piglets were inoculated with phosphate-buffered saline, 4609, or DBB25. Two piglets in each group were euthanatized on day 10 postinfection. The remainder were euthanatized at 21 days postinfection. Clinical signs, including fever, coughing, and sneezing, were present in both groups. Nasal washes performed 7, 14, and 21 days postinoculation demonstrated that strain DBB25 colonized the nasal cavity but did so at levels that were significantly less than those achieved by strain 4609. Analysis of colonization based on the number of CFU per gram of tissue recovered from the turbinate, trachea, and lung also demonstrated significant differences between DBB25 and 4609, at both day 10 and day 21 postinfection. Mild to moderate turbinate atrophy was apparent in pigs inoculated with strain 4609, while turbinates of those infected with strain DBB25 developed no or mild atrophy. We conclude from these results that siderophore production by B. bronchiseptica is not essential for colonization of swine but is required for maximal virulence. B. bronchiseptica mutants with nonrevertible defects in genes required for alcaligin synthesis may be candidates for evaluation as attenuated, live vaccine strains in conventionally reared pigs.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3