Tyrosine kinase-dependent release of an adenovirus preterminal protein complex from the nuclear matrix

Author:

Angeletti P C1,Engler J A1

Affiliation:

1. Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, 35294-0005, USA.

Abstract

Adenovirus (Ad) replicative complexes form at discrete sites on the nuclear matrix (NM) through the interaction of Ad preterminal protein (pTP). The NM is a highly salt-resistant fibrillar network which is known to anchor transcription, mRNA splicing, and DNA replication complexes. Incubation of rATP with NM to which pTP was bound caused the release of pTP as a pTP-NM complex with a size of 220 to 230 kDa; incubation with 5' adenylylimidodiphosphate (rAMP-PNP) showed no significant release, indicating that rATP hydrolysis was required. With NM extracts, it was shown that a pTP-NM complex which was capable of binding Ad origin DNA could be reconstituted in vitro. A number of high-molecular-weight NM proteins ranging in size from 120 to 200 kDa were identified on Far Western blots for their ability to bind pTP. rATP-dependent release of pTP from the NM was inhibited in a dose-dependent fashion by the addition of tyrosine kinase inhibitors, such as quercetin, methyl-2,5-dihydroxycinnamate, or genistein. NM-mediated phosphorylation of a poly(Glu, Tyr) substrate was also significantly abrogated by the addition of these compounds. rATP-dependent release of Ad DNA termini bound to the NM via pTP was also blocked by the addition of these inhibitors. These results indicate that a tyrosine kinase mechanism controls the release of pTP from its binding sites on the NM. These data support the concept that phosphorylation may play a key role in the modulation of pTP binding sites on the NM.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference60 articles.

1. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl. 1995. Current protocols in molecular biology. John Wiley & Sons Inc. New York.

2. The nuclear matrix: a heuristic model for investigating genomic organization and function in the nucleus;Berezney R.;J. Cell. Biochem.,1991

3. Identification of a nuclear protein matrix;Berezney R.;Biochem. Biophys. Res. Commun.,1974

4. Nuclear matrix: isolation and characterization of a framework structure from rat liver nuclei;Berezney R.;J. Cell Biol.,1977

5. Osteocalcin gene promoter-binding factors are tissue-specific nuclear matrix components;Bidwell J. P.;Proc. Natl. Acad. Sci. USA,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3