A bacterial protease perturbs the paracellular barrier function of transporting epithelial monolayers in culture

Author:

Azghani A O1,Gray L D1,Johnson A R1

Affiliation:

1. Department of Biochemistry, University of Texas Health Center, Tyler 75710.

Abstract

Tight junctions between cells and adhesion to the substratum maintain the barrier function of epithelia throughout the body. Damage to the epithelial barrier by microbial products allows penetration of bacteria and promotion of infection. We studied the effects of Pseudomonas elastase (PE) on the barrier function of epithelia by using Madin-Darby canine kidney (MDCK) epithelial cells; these cells form tight junctions (zonula occludens [ZO]) in vitro. PE decreased electrical resistance across the monolayers in a concentration- and time-dependent manner. Immunostaining of selected proteins of the ZO and zonula adherens was used to explore the effects of PE on junctional proteins. PE-treated monolayers of MDCK cells had markedly decreased immunostaining of ZO-1, a protein of the ZO, but light microscopy of PE-treated cells revealed no obvious morphologic changes. A chromium release assay indicated that, even with marked changes in transmonolayer electrical resistance, the permeability defect was not due to membrane disruption. Fluorescence staining of F-actin indicated diminution of cellular microfilaments in PE-treated cells, but E cadherin (uvomorulin), a protein of the zonula adherens, was unaffected by the enzyme. Elastases from porcine pancreas and human leukocytes with similar enzymatic activity (6 U/ml) did not decrease transmonolayer electrical resistance or degrade ZO-1. These results suggest that PE disturbs the barrier function of epithelial monolayers, in part, by changing the cell architecture and altering at least one protein of the ZO.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference33 articles.

1. Endothelial and epithelial cell adhesion molecules;Albelda S. M.;Am. J. Respir. Cell Mol. Biol.,1991

2. Studies on dispersed pancreatic exocrine cells;Amsterdam A.;J. Cell Biol.,1974

3. Effect of Pseudomonas aeruginosa elastase on alveolar epithelial permeability in guinea pigs;Azghani A. O.;Infect. Immun.,1990

4. Elastase from Pseudomonas aeruginosa alters integrity of intercellular junctions of cultured epithelial cells. Abstr. 8010;Azghani A. O.;FASEB J.,1991

5. Multiple organ system failure and infection in adult respiratory distress syndrome;Bell R. C.;Ann. Intern. Med.,1983

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3