Recognition of a highly conserved region of human immunodeficiency virus type 1 gp120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone

Author:

Johnson R P1,Trocha A1,Buchanan T M1,Walker B D1

Affiliation:

1. Infectious Disease Unit, Massachusetts General Hospital, Boston 02114.

Abstract

Human immunodeficiency virus type 1 (HIV-1) isolates exhibit extensive sequence variation, particularly in the gp120 subunit of the envelope glycoprotein, and the degree of this variation has raised questions as to whether conserved regions of the HIV-1 envelope can be recognized by the host immune response. A CD8+ cytotoxic T-lymphocyte (CTL) clone specific for the HIV-1 envelope was derived by culturing peripheral blood mononuclear cells from an HIV-1 seropositive subject in the presence of a CD3-specific monoclonal antibody, interleukin-2, and irradiated allogeneic peripheral blood mononuclear cells. Lysis of target cells was restricted by an HLA-C molecule, Cw4, which has not been previously shown to present viral antigen to CTL. Mapping of the specificity of this CTL clone by using synthetic HIV-1 peptides localized the epitope to an 8-amino-acid region of gp120 (amino acids 376 to 383) which is conserved among approximately 90% of sequenced viral isolates. Examination of the recognition of variant peptides by this CTL clone demonstrated that a single, nonconservative amino acid substitution within the 8-amino-acid minimal epitope could abrogate lysis of targets incubated with the variant peptide. The identification of a CTL epitope in a highly conserved region of gp120 documents the ability of cellular immune responses of infected persons to respond to relatively invariant portions of this highly variable envelope glycoprotein. However, the ability of even a single-amino-acid change in gp120 to abolish lysis by CTL supports the hypothesis that sequence variation in HIV-1 may serve as a mechanism of immune escape. In addition, the identification of an HLA-C molecule presenting viral antigen to CTL supports a functional role for these molecules.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference53 articles.

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3