Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus

Author:

Li S1,Schulman J1,Itamura S1,Palese P1

Affiliation:

1. Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029.

Abstract

The neuraminidase (NA) gene of influenza A/WSN/33 (WSN) virus has previously been shown to be associated with neurovirulence in mice and growth in Madin-Darby bovine kidney (MDBK) cells. Nucleotide sequence analysis has indicated that the NA of WSN virus lacks a conserved glycosylation site at position 130 (corresponding to position 146 in the N2 subtype). To investigate the role of this carbohydrate in viral pathogenicity, we used reverse genetics methods to generate a Glyc+ mutant virus, in which the glycosylation site Asn-130 was introduced into the WSN virus NA. Unlike the wild-type WSN virus, the Glyc+ mutant virus did not undergo multicycle replication in MDBK cells in the absence of trypsin, presumably because of lack of cleavage activation of infectivity. In contrast, revertant viruses derived from the Glyc+ mutant were able to replicate in MDBK cells without exogenous protease. Nucleotide sequence analysis revealed that the NAs of the revertant viruses had lost the introduced glycosylation site. In contrast to wild-type and revertant viruses, the Glyc+ mutant virus was not able to multiply in mouse brain. These results suggest that the absence of a glycosylation site at position 130 of the NA plays a key role in the neurovirulence of WSN virus in mice.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3