Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication

Author:

Chambers T J1,Nestorowicz A1,Amberg S M1,Rice C M1

Affiliation:

1. Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093.

Abstract

To study the role of specific regions of the yellow fever virus NS2B protein in proteolytic processing and association with the NS3 proteinase domain, a series of mutations were created in the hydrophobic regions and in a central conserved hydrophilic region proposed as a domain important for NS2B function. The effects of these mutations on cis cleavage at the 2B/3 cleavage site and on processing at other consensus cleavage sites for the NS3 proteinase in the nonstructural region were then characterized by cell-free translation and transient expression in BHK cells. Association between NS2B and the NS3 proteinase domain and the effects of mutations on complex formation were investigated by nondenaturing immunoprecipitation of these proteins expressed in infected cells, by cell-free translation, or by recombinant vaccinia viruses. Mutations within the hydrophobic regions had subtle effects on proteolytic processing, whereas mutations within the conserved domain dramatically reduced cleavage efficiency or abolished all cleavages. The conserved domain of NS2B is also implicated in formation of an NS2B-NS3 complex on the basis of the ability of mutations in this region to eliminate both association of these two proteins and trans-cleavage activity. In addition, mutations which either eliminated proteolytic processing or had no apparent effect on processing were found to abolish recovery of infectious virus following RNA transfection. These results suggest that the conserved region of NS2B is a domain essential for the function of the NS3 proteinase. Hydrophobic regions of NS2B whose structural integrity may not be essential for proteolytic processing may have additional functions during viral replication.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference35 articles.

1. Amberg S. M. and C. M. Rice. Unpublished data.

2. Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain;Arias C. F.;Virology,1993

3. Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses;Bazan J. F.;Virology,1989

4. Structural and catalytic models of trypsin-like viral proteases;Bazan J. F.;Semin. Virol.,1990

5. The role of charged amino acids in the localization of secreted and membrane proteins;Boyd D.;Cell,1990

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3