Interaction of herpes simplex virus 1 alpha regulatory protein ICP0 with elongation factor 1delta: ICP0 affects translational machinery

Author:

Kawaguchi Y1,Bruni R1,Roizman B1

Affiliation:

1. The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Illinois 60637, USA.

Abstract

The herpes simplex virus 1 (HSV-1)-infected cell protein 0 (ICP0) is a promiscuous transactivator, and by necessity, its functions must be mediated through cellular gene products. In an attempt to identify cellular factors interacting with ICP0, we used the carboxyl-terminal domain of ICP0 as "bait" in the yeast (Saccharomyces cerevisiae) two-hybrid system. Our results were as follows: (i) All 43 cDNAs in positive yeast colonies were found to encode the same translation factor, elongation factor delta-1 (EF-1delta). (ii) Purified chimeric protein consisting of glutathione S-transferase (GST) fused to EF-1delta specifically formed complexes with ICP0 contained in HSV-1-infected cell lysate. (iii) Fractionation of infected HEp-2 cells and immunofluorescence studies revealed that ICP0 was localized both in the nucleus and in the cytoplasm. In primary human foreskin fibroblasts, ICP0 was localized predominantly in the cytoplasm throughout HSV-1 infection even early in infection. (iv) Addition of the chimeric protein GST-carboxyl-terminal domain of ICP0 to the rabbit reticulocyte lysate in vitro translation system resulted in a dose-dependent decrease in protein synthesis. In contrast, GST alone or GST fused to the amino-terminal domain of ICP0 had no effect on the in vitro translation system. (v) The predominant forms of EF-1delta on electrophoresis in denaturing gels have apparent Mrs of 38,000 and 40,000. The higher-Mr form is a minor species in mock-infected cells, whereas in human fibroblasts and Vero cells infected with HSV-1, this isoform becomes dominant. These results indicate that ICP0 is present and may have a significant role in the cytoplasm of infected cells, possibly by altering the efficiency of translation of viral mRNAs.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3