Genome-Wide Analysis of Cellular Response to Bacterial Genotoxin CdtB in Yeast

Author:

Kitagawa Takao1,Hoshida Hisashi1,Akada Rinji1

Affiliation:

1. Department of Applied Molecular Bioscience, Division of Engineering, Yamaguchi University Graduate School of Medicine, Ube 755-8611, Japan

Abstract

ABSTRACT The cytolethal distending toxins (CDTs) are secreted virulence proteins produced by several bacterial pathogens, and the subunit CdtB has the ability to create DNA lesions, primarily DNA single-strand breaks (SSBs) in vitro, and cause cell cycle arrest, cellular distension, and cell death in both mammalian and yeast cells. To elucidate the components of the mechanisms underlying the response to CdtB-induced DNA lesions, a CdtB expression plasmid was transformed into a series of diploid yeast strains harboring deletions in 4,708 nonessential genes. A total of 4,706 of these clones were successfully transformed, which we have now designated as a systematic transformation array (STA), and were subsequently screened. We identified 61 sensitive strains from the STA whose deleted genes can be categorized into a number of groups, including DNA metabolism, chromosome segregation, vesicular traffic, RNA catabolism, protein translation, morphogenesis, and nuclear transport, as well as one unknown open reading frame. However, only 28 of these strains were found to be sensitive to HO endonuclease, which is known to create a DNA double-strand break (DSB), suggesting that CdtB-induced DNA lesion is not similar to the direct DSB. Amazingly, CdtB expression elicits severe growth defects in haploid yeast cells, but only marginal defects in diploid yeast cells. The presence and absence of genes known to be involved in DNA repair in these genome-wide data reveal that CdtB-induced DNA damage is specifically repaired well in the diploid by homologous recombination but not by other repair mechanisms. Our present results provide insights into how CdtB pathogenesis is linked to eukaryotic cellular functions.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3