Affiliation:
1. Department of Neurosciences, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
2. Center of Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California, Davis, California 95616
Abstract
ABSTRACT
The immune response to
Borrelia burgdorferi
, the causative agent of Lyme disease, is complex. We studied the immunoglobulin M (IgM) and IgG antibody response to N40Br, a sensu stricto strain, in the rhesus macaque(nonhuman primate [NHP]) model of infection to identify the spirochetal protein targets of specific antibody. Antigens used in enzyme-linked immunosorbent assays were whole-cell sonicates of the spirochete and recombinant proteins of
B. burgdorferi
. Immunoblotting with a commercially available strip and subsequent quantitative densitometry of the bands were also used. Sera from four different groups of NHPs were used: immunocompetent, transiently immunosuppressed, extended immunosuppressed, and uninfected. In immunocompetent and transiently immunosuppressed NHPs, there was a strong IgM and IgG response. Major proteins for the early IgM response were P39 and P41 and recombinant BmpA and OspC. Major proteins for the later IgG response were P39, P41, P18, P60, P66, and recombinant BmpA and DbpA. There was no significant response in the NHPs to recombinant OspA or to Arp, a 37-kDa protein that elicits an antibody response during infection in mice. Most antibody responses, except for that to DbpA, were markedly diminished by prolonged dexamethasone treatment. This study supports the hypothesis that recombinant proteins may provide a useful adjunct to current diagnostic testing for Lyme borreliosis.
Publisher
American Society for Microbiology
Subject
Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献