Solithromycin Inhibition of Protein Synthesis and Ribosome Biogenesis in Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae

Author:

Rodgers Ward,Frazier Ashley D.,Champney W. Scott

Abstract

ABSTRACTThe continuing increase in antibiotic-resistant microorganisms is driving the search for new antibiotic targets and improved antimicrobial agents. Ketolides are semisynthetic derivatives of macrolide antibiotics, which are effective against certain resistant organisms. Solithromycin (CEM-101) is a novel fluoroketolide with improved antimicrobial effectiveness. This compound binds to the large 50S subunit of the ribosome and inhibits protein biosynthesis. Like other ketolides, it should impair bacterial ribosomal subunit formation. This mechanism of action was examined in strains ofStreptococcus pneumoniae,Staphylococcus aureus, andHaemophilus influenzae. The mean 50% inhibitory concentrations (IC50s) for solithromycin inhibition of cell viability, protein synthesis, and growth rate were 7.5, 40, and 125 ng/ml forStreptococcus pneumoniae,Staphylococcus aureus, andHaemophilus influenzae, respectively. The net formation of the 50S subunit was reduced in all three organisms, with IC50s similar to those given above. The rates of 50S subunit formation measured by a pulse-chase labeling procedure were reduced by 75% in cells growing at the IC50of solithromycin. Turnover of 23S rRNA was stimulated by solithromycin as well. Solithromycin was found to be a particularly effective antimicrobial agent, with IC50s comparable to those of telithromycin and significantly better than those of azithromycin and clarithromycin in these three microorganisms.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference28 articles.

1. Pathogens resistant to antibacterial agents;Chen;Infect. Dis. Clin. North Am.,2009

2. New antibiotic targets;Champney;Methods Mol. Med.,2008

3. Resistance drives antibacterial drug development;Theuretzbacher;Curr. Opin. Pharmacol.,2011

4. Antibiotics that target protein synthesis;McCoy;Wiley Interdiscip. Rev. RNA,2011

5. Antibiotics in development targeting protein synthesis;Sutcliffe;Ann. N. Y. Acad. Sci.,2011

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3