One-Step, Multiplex, Real-Time PCR Assay with Molecular Beacon Probes for Simultaneous Detection, Differentiation, and Quantification of Human T-Cell Leukemia Virus Types 1, 2, and 3

Author:

Besson Guillaume1,Kazanji Mirdad12

Affiliation:

1. Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon

2. Réseau International des Instituts Pasteur, Institut Pasteur, 28 Rue du Dr Roux, 75015 Paris, France

Abstract

ABSTRACT A single-tube, multiplex, real-time PCR assay with molecular beacons was established in which various probes were used for the simultaneous detection, differentiation, and quantification of human T-cell leukemia virus types 1, 2, and 3 (HTLV-1, HTLV-2, and HTLV-3, respectively) and of simian T-cell leukemia virus types 1 and 3 (STLV-1 and STLV-3, respectively). The quantitative amplification of the standards with MT4 (HTLV-1) and C19 (HTLV-2) cell lines and a molecular clone of HTLV-3 was linear, with the simplex and multiplex methods having similar efficiencies. A maximum difference of 0.9 (mean, 0.4; range, 0.0 to 0.9) was found between threshold cycle values in single and multiplex reactions. The efficiency with each probe in the multiplex reaction was close to 100%, indicating strong linear amplification. The albumin gene was used to standardize the copy number. Comparable results for the detection and quantification of HTLV-1 were obtained with our new methods and with other real-time PCR methods described previously. With our new multiplex assay, however, we were able to detect and quantify HTLV-2 and -3 and STLV-1 and -3 in clinical specimens, with an excellent dynamic range of 10 6 to 10 0 copies per assay, which the other assays could not do. Thus, it will be possible to determine a wide range of HTLV types in both standard and clinical samples, with a detection of 1 to 10 HTLV copies in samples containing at least 100 cells. Furthermore, our system can provide evidence for multiple infections with the three HTLV types, with separate proviral load results. Our new method also could be used for epidemiological studies in Africa and in countries where HTLVs and STLVs are endemic.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3