Inhibitory Effect of Coumarin on Syntrophic Fatty Acid-Oxidizing and Methanogenic Cultures and Biogas Reactor Microbiomes

Author:

Popp Denny1ORCID,Plugge Caroline M.2ORCID,Kleinsteuber Sabine1,Harms Hauke1,Sträuber Heike1

Affiliation:

1. Department of Environmental Microbiology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany

2. Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands

Abstract

ABSTRACT Coumarins are widely found in plants as natural constituents having antimicrobial activity. When considering plants that are rich in coumarins for biogas production, adverse effects on microorganisms driving the anaerobic digestion process are expected. Furthermore, coumarin derivatives, like warfarin, which are used as anticoagulating medicines, are found in wastewater, affecting its treatment. Coumarin, the structure common to all coumarins, inhibits the anaerobic digestion process. However, the details of this inhibition are still elusive. Here, we studied the impact of coumarin on acetogenesis and methanogenesis. First, coumarin was applied at four concentrations between 0.25 and 1 g · liter −1 to pure cultures of the methanogens Methanosarcina barkeri and Methanospirillum hungatei , which resulted in up to 25% less methane production. Acetate production of syntrophic propionate- and butyrate-degrading cultures of Syntrophobacter fumaroxidans and Syntrophomonas wolfei was inhibited by 72% at a coumarin concentration of 1 g · liter −1 . Coumarin also inhibited acetogenesis and acetoclastic methanogenesis in a complex biogas reactor microbiome. When a coumarin-adapted microbiome was used, acetogenesis and methanogenesis were not inhibited. According to amplicon sequencing of bacterial 16S rRNA genes and mcrA genes, the communities of the two microbiomes were similar, although Methanoculleus was more abundant and Methanobacterium less abundant in the coumarin-adapted than in the nonadapted microbiome. Our results suggest that well-dosed feeding with coumarin-rich feedstocks to full-scale biogas reactors while keeping the coumarin concentrations below 0.5 g · liter −1 will allow adaptation to coumarins by structural and functional community reorganization and coumarin degradation. IMPORTANCE Coumarins from natural and anthropogenic sources have an inhibitory impact on the anaerobic digestion process. Here, we studied in detail the adverse effects of the model compound coumarin on acetogenesis and methanogenesis, which are two important steps of the anaerobic digestion process. Coumarin concentrations lower than 0.5 g · liter −1 had only a minor impact. Even though similar inhibitory effects can be assumed for coumarin derivatives, little effects on the anaerobic treatment of wastewater are expected where concentrations of coumarin derivatives are lower than 0.5 g · liter −1 . However, when full-scale reactors are fed with coumarin-rich feedstocks, the biogas processes might be inhibited. Hence, these feedstocks should be utilized in a well-dosed manner or after adaptation of the microbial community.

Funder

Deutscher Akademischer Austauschdienst

Helmholtz-Gemeinschaft

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference43 articles.

1. Toxicants inhibiting anaerobic digestion: A review

2. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature

3. Activity and Viability of Methanogens in Anaerobic Digestion of Unsaturated and Saturated Long-Chain Fatty Acids

4. Harborne JB . 1999. Classes and functions of secondary products from plants, p 1–26. InWaltonNJ BrownDE (ed), Chemicals from plants: perspectives on plant secondary products. World Scientific & Imperial College Press, London, United Kingdom.

5. Antimicrobial properties of plant secondary metabolites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3