DNA immunization: ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviral protection but abrogates antibody induction

Author:

Rodriguez F1,Zhang J1,Whitton J L1

Affiliation:

1. Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA.

Abstract

DNA immunization can induce cytotoxic T lymphocytes (CTL), antibodies, and protection against microbial challenge. The underlying mechanisms remain obscure and must be understood to permit rational manipulation and optimization of the technique. We set out to enhance the intracellular degradation of a viral antigen, with the intent of improving antigen entry into, and presentation by, the class I major histocompatibility complex pathway. We achieved this goal by cotranslational ubiquitination of a plasmid-encoded viral antigen, lymphocytic choriomeningitis virus (LCMV) nucleoprotein (NP). We show that native NP is very stable in cell culture, while the ubiquitinated product is so rapidly degraded that it is barely detectable. This rapid degradation leads to more efficient sensitization of target cells in an in vitro cytotoxicity assay, consistent with enhanced antigen presentation, and both degradation and target cell recognition are blocked by a proteasome inhibitor. We have used the plasmid for in vivo studies and find that, remarkably, ubiquitination leads to a complete abrogation of antibody responses, presumably because the encoded protein is so rapidly and completely degraded that insufficient antigen remains to interact appropriately with B cells. In contrast, in vivo CTL induction is improved by ubiquitination of NP. That CTL are induced at all by this rapidly degraded protein may shed light on the mechanism by which CTL are induced by DNA immunization; it has been suggested that CTL induction following intramuscular DNA injection results not from antigen presentation by cells taking up and expressing the DNA but rather from uptake of soluble protein by specialized antigen-presenting cells (APC). It appears to us unlikely that the ubiquitinated protein could function in this manner, since it is so rapidly degraded in vitro and fails to induce antibodies in vivo. Finally, the ubiquitinated protein confers markedly enhanced protection against LCMV challenge. Mice immunized with a plasmid encoding NP show approximately 100-fold reductions in virus titers compared to controls, while mice immunized with a plasmid encoding the ubiquitinated NP show reductions in virus load of at least 5 x 10(4)- to 5 x 10(5)-fold. This is by far the most effective DNA vaccine that we have yet designed. Ubiquitination therefore may improve DNA immunization, but caution is warranted, since immunity to many microbes depends on induction of good humoral immunity, and we show here that this may be prevented by ubiquitination of the encoded protein.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference41 articles.

1. Antiviral cytotoxic T cell response induced by in vivo priming with a free synthetic peptide;Aichele P.;J. Exp. Med.,1990

2. The ubiquitin-dependent proteolytic pathway in skeletal muscle: its role in pathological states;Argiles J. M.;Trends Pharmacol. Sci.,1996

3. The proteasome-specific inhibitor lactacystin blocks presentation of cytotoxic T Iymphocyte epitopes in human and murine cells;Cerundolo V.;Eur. J. Immunol.,1997

4. Gene vaccination with naked plasmid DNA: mechanism of CTL priming;Corr M.;J. Exp. Med.,1996

5. Presentation of endogenous and exogenous antigens is not affected by inactivation of E1 ubiquitin-activating enzyme in temperature-sensitive cell lines;Cox J. H.;J. Immunol.,1995

Cited by 251 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3