Neonatal DNA immunization with a plasmid encoding an internal viral protein is effective in the presence of maternal antibodies and protects against subsequent viral challenge

Author:

Hassett D E1,Zhang J1,Whitton J L1

Affiliation:

1. Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA.

Abstract

Conventional vaccines are remarkably effective in adults but are much less successful in the very young, who are less able to initiate a mature immune response and who may carry maternal antibodies which inactivate standard vaccines. We set out to determine whether DNA immunization might circumvent these problems. We have previously shown that intramuscular injection of plasmid DNA encoding the nucleoprotein (NP) gene of lymphocytic choriomeningitis virus (LCMV) is capable of inducing immune responses and protecting 50% of adult mice against lethal and sublethal challenge with LCMV. Here we demonstrate that mouse pups injected with the same plasmid hours or days after birth produce major histocompatibility complex-restricted, NP-specific cytotoxic T lymphocytes (CTL) that persist into adulthood; 48% of vaccinated pups responded to subsequent sublethal viral challenge by the accelerated production of anti-NP LCMV-specific CTL, indicating that these animals had been successfully immunized by the plasmid DNA. In addition, these mice showed a >95% reduction in splenic viral titers 4 days postinfection compared to control mice, demonstrating a more rapid control of infection in vivo. Furthermore, pups born of and suckled on LCMV-immune dams (and therefore containing passively acquired anti-LCMV antibodies at the time of DNA inoculation) responded to the DNA vaccine in a similar manner, showing that maternally derived anti-LCMV antibodies do not significantly inhibit the generation of protective immune responses following DNA vaccination. These findings suggest that, at least in this model system, DNA immunization circumvents many of the problems associated with neonatal immunization.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3