Cyclic-AMP-dependent switch in initiation of transcription from the two promoters of the Escherichia coli gal operon: identification and assay of 5'-triphosphate ends of mRNA by GTP:RNA guanyltransferase

Author:

Irani M1,Musso R1,Adhya S1

Affiliation:

1. Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892.

Abstract

We have studied the initiation of transcription of the gal operon in Escherichia coli (i) by analyzing the 5'-triphosphate ends and (ii) by measuring the level of promoter-proximal gal mRNA made in vivo. The 5' termini were identified and quantified by capping with GTP:mRNA guanyltransferase, and the mRNA levels were determined by hybridization of pulse-labeled [32P]RNA with a specific DNA probe. Our results conclusively demonstrate the in vivo activities of two promoters, P1 and P2, with separate initiation sites (S1 and S2) as suggested before from in vitro and in vivo experiments (S. Adhya and W. Miller, Nature [London] 279:492-494, 1979; R. E. Musso, R. DiLauro, S. Adhya, and B. de Crombrugghe, Cell 12:847-854, 1977). We have also studied the effect of cyclic AMP (cAMP) on in vivo gal transcription and found that whereas total gal transcription remains largely unchanged, the relative proportions of the S1 and S2 mRNAs are influenced by the level of cAMP in the cell. In strains devoid of cAMP (cya), transcription initiates equally at S1 and S2; in cAMP-proficient cells (cya+), the S1 initiation increases twofold with a concomitant decrease in S2 initiation. Addition of a saturating amount of exogenous cAMP to cya mutant cells results in a relatively larger switch from S2 to S1. Our results clearly show that while cAMP is an inhibitor of S2, it is not an absolute requirement for transcription initiation at S1, but only acts to increase low-level transcription from the P1 promoter. Using these approaches, we have also studied gal promoter mutants (P211, P18, and P35) which show altered behavior in transcription initiations and in response to cAMP. On the basis of these results, we have discussed models by which transcription initiates at the two overlapping gal promoters (P1 and P2) and discussed how cAMP level modulates the switch between them.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3