Synergistic Activity of Dispersin B and Cefamandole Nafate in Inhibition of Staphylococcal Biofilm Growth on Polyurethanes

Author:

Donelli G.1,Francolini I.2,Romoli D.1,Guaglianone E.1,Piozzi A.2,Ragunath C.3,Kaplan J. B.3

Affiliation:

1. Department of Technologies and Health, Istituto Superiore di Sanità

2. Department of Chemistry, University of Rome “La Sapienza,” Rome, Italy

3. Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey

Abstract

ABSTRACT Antibiotic therapies to eradicate medical device-associated infections often fail because of the ability of sessile bacteria, encased in their exopolysaccharide matrix, to be more drug resistant than planktonic organisms. In the last two decades, several strategies to prevent microbial adhesion and biofilm formation on the surfaces of medical devices, based mainly on the use of antiadhesive, antiseptic, and antibiotic coatings on polymer surfaces, have been developed. More recent alternative approaches are based on molecules able to interfere with quorum-sensing phenomena or to dissolve biofilms. Interestingly, a newly purified β- N -acetylglucosaminidase, dispersin B, produced by the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans , is able to dissolve mature biofilms produced by Staphylococcus epidermidis as well as some other bacterial species. Therefore, in this study, we developed new polymeric matrices able to bind dispersin B either alone or in combination with an antibiotic molecule, cefamandole nafate (CEF). We showed that our functionalized polyurethanes could adsorb a significant amount of dispersin B, which was able to exert its hydrolytic activity against the exopolysaccharide matrix produced by staphylococcal strains. When microbial biofilms were exposed to both dispersin B and CEF, a synergistic action became evident, thus characterizing these polymer-dispersin B-antibiotic systems as promising, highly effective tools for preventing bacterial colonization of medical devices.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 186 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3