Adhesion of the Entomopathogenic Fungus Beauveria ( Cordyceps ) bassiana to Substrata

Author:

Holder Diane J.1,Keyhani Nemat O.1

Affiliation:

1. Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611

Abstract

ABSTRACT The entomopathogenic fungus Beauveria bassiana produces at least three distinct single-cell propagules, aerial conidia, vegetative cells termed blastospores, and submerged conidia, which can be isolated from agar plates, from rich broth liquid cultures, and under nutrient limitation conditions in submerged cultures, respectively. Fluorescently labeled fungal cells were used to quantify the kinetics of adhesion of these cell types to surfaces having various hydrophobic or hydrophilic properties. Aerial conidia adhered poorly to weakly polar surfaces and rapidly to both hydrophobic and hydrophilic surfaces but could be readily washed off the latter surfaces. In contrast, blastospores bound poorly to hydrophobic surfaces, forming small aggregates, bound rapidly to hydrophilic surfaces, and required a longer incubation time to bind to weakly polar surfaces than to hydrophilic surfaces. Submerged conidia displayed the broadest binding specificity, adhering to hydrophobic, weakly polar, and hydrophilic surfaces. The adhesion of the B. bassiana cell types also differed in sensitivity to glycosidase and protease treatments, pH, and addition of various carbohydrate competitors and detergents. The outer cell wall layer of aerial conidia contained sodium dodecyl sulfate-insoluble, trifluoroacetic acid-soluble proteins (presumably hydrophobins) that were not present on either blastospores or submerged conidia. The variations in the cell surface properties leading to the different adhesion qualities of B. bassiana aerial conidia, blastospores, and submerged conidia could lead to rational design decisions for improving the efficacy and possibly the specificity of entomopathogenic fungi for host targets.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 201 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3