Resistance Profile of a Hepatitis C Virus RNA-Dependent RNA Polymerase Benzothiadiazine Inhibitor

Author:

Nguyen Tammy T.1,Gates Adam T.1,Gutshall Lester L.1,Johnston Victor K.1,Gu Baohua1,Duffy Kevin J.2,Sarisky Robert T.1

Affiliation:

1. Departments of Virology

2. Medicinal Chemistry, The Metabolic and Viral Diseases Center of Excellence for Drug Discovery, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania 19426

Abstract

ABSTRACT Recently, a benzo-1,2,4-thiadiazine antiviral agent (C 21 H 21 N 3 O 4 S; compound 4) was shown to be a potent, highly specific inhibitor of the primary catalytic enzyme of the hepatitis C virus (HCV) replicase complex. In this study, we selected for resistance to confirm the mechanism of action for compound 4 in HCV replicon cells. As expected, spontaneous mutations or fluidity in the HCV polymerase (NS5B) coding sequence occurred upon routine passage of the HCV replicon cells in the absence of compound 4. After 1 month of culture in the presence of 10 μM compound 4, or 20 times the 50% inhibitory concentration of the replicon, replicon cells were almost 20-fold less susceptible to compound 4. Twenty-one NS5B cDNA clones were generated from the resistant replicon cells. Five mutations in the 21 NS5B clones were present at frequencies higher than that of control replicon cells, and no clone contained more than a single mutation within the polymerase gene. RNA-dependent RNA polymerase studies using purified recombinant NS5B containing these single point mutations allowed the identification of residue 414 as sufficient for biochemical resistance to compound 4. Further, the contribution of this residue to confer cell-based resistance to compound 4 was validated using a stable recombinant mutant replicon cell line which harbors a methionine-to-threonine change at residue 414. The potential for additional mutations in other nonstructural genes of HCV to contribute to the resistance profile of compound 4 is discussed.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3