Affiliation:
1. Institute of Microbiology, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey 08903
Abstract
Osmotic regulation of invertase formation and secretion by protoplasts of
Saccharomyces
was examined using sorbitol, KCl, NaCl, or magnesium sulfate as the osmotic support. The synthesis and secretion of the enzyme is remarkably sensitive to the osmolarity of the supporting medium irrespective of the particular support employed. Invertase formation was inhibited at high osmolarity and was maximal at 0.65 to 0.75 osmolal, even though some leakage of the intracellular enzyme α-glucosidase and of ultraviolet (UV)-absorbing materials occurred under these conditions. The reduction of invertase formation and secretion due to high osmolarity was eliminated promptly when protoplasts were transferred into a medium of lower osmolarity. The rate of fructose uptake and of threonine incorporation into protein was decreased by high osmolarity; also reduction of invertase formation could be partially reversed by increasing the level of sugar supplied as energy source. Thus changes in the permeability of the plasma membrane (and presumably also in its structure) are important factors in the response of protoplasts to high osmolarity, though certainly not the complete explanation. Protoplasts suspended in 0.8
m
sorbitol, with 10m
m
fructose as the energy source, increased their invertase level 5- to 10-fold during a 2-hr incubation without substantial release of α-glucosidase or UV-absorbing materials. Both the large and small forms of invertase were present in the protoplasts, but only the large form was released into the medium when enzyme was being actively synthesized. Formation and secretion of newly formed invertase and the release of enzyme initially present were inhibited by cycloheximide.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献