Chloroflexi CL500-11 Populations That Predominate Deep-Lake Hypolimnion Bacterioplankton Rely on Nitrogen-Rich Dissolved Organic Matter Metabolism and C 1 Compound Oxidation

Author:

Denef Vincent J.1ORCID,Mueller Ryan S.2,Chiang Edna1,Liebig James R.3,Vanderploeg Henry A.3

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA

2. Department of Microbiology, Oregon State University, Corvallis, Oregon, USA

3. NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan, USA

Abstract

ABSTRACT The Chloroflexi CL500-11 clade contributes a large proportion of the bacterial biomass in the oxygenated hypolimnia of deep lakes worldwide, including the world's largest freshwater system, the Laurentian Great Lakes. Traits that allow CL500-11 to thrive and its biogeochemical role in these environments are currently unknown. Here, we found that a CL500-11 population was present mostly in offshore waters along a transect in ultraoligotrophic Lake Michigan (a Laurentian Great Lake). It occurred throughout the water column in spring and only in the hypolimnion during summer stratification, contributing up to 18.1% of all cells. Genome reconstruction from metagenomic data suggested an aerobic, motile, heterotrophic lifestyle, with additional energy being gained through carboxidovory and methylovory. Comparisons to other available streamlined freshwater genomes revealed that the CL500-11 genome contained a disproportionate number of cell wall/capsule biosynthesis genes and the most diverse spectrum of genes involved in the uptake of dissolved organic matter (DOM) substrates, particularly peptides. In situ expression patterns indicated the importance of DOM uptake and protein/peptide turnover, as well as type I and type II carbon monoxide dehydrogenase and flagellar motility. Its location in the water column influenced its gene expression patterns the most. We observed increased bacteriorhodopsin gene expression and a response to oxidative stress in surface waters compared to its response in deep waters. While CL500-11 carries multiple adaptations to an oligotrophic lifestyle, its investment in motility, its large cell size, and its distribution in both oligotrophic and mesotrophic lakes indicate its ability to thrive under conditions where resources are more plentiful. Our data indicate that CL500-11 plays an important role in nitrogen-rich DOM mineralization in the extensive deep-lake hypolimnion habitat.

Funder

U.S. Department of Energy

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3