In search of a selective antiviral chemotherapy

Author:

De Clercq E1

Affiliation:

1. Rega Institue for Medical Research, Katholieke Universiteit Leuven, Belgium.

Abstract

This article describes several approaches to a selective therapy of virus infections: (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU [brivudin]) for the therapy of herpes simplex virus type 1 and varicella-zoster virus infections: (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC [cidofovir]) for the therapy of various DNA virus (i.e., herpesvirus, adenovirus, papillomavirus, polyomavirus, and poxvirus) infections; 9-(2-phosphonylmethoxyethyl)adenine (PMEA [adefovir]) for the therapy of retrovirus, hepadnavirus, and herpesvirus infections; (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA) for the therapy and prophylaxis of retrovirus and hepadnavirus infections; and nonnucleoside reverse transcriptase inhibitors (NNRTIs), such as tetrahydroimidazo[4,5,1-jk][1,4]-benzodiazepin-2(IH)-one and -thione (TIBO), 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT), alpha-anilinophenylacetamide (alpha-APA), and 2',5'bis-O-(tert-butyldimethylsilyl)-3'-spiro-5"-(4"-amino-1",2"-oxat hiole- 2",2"-dioxide)pyrimidine (TSAO) derivatives, and thiocarboxanilides for the treatment of human immunodeficiency virus type 1 (HIV-1) infections. For the clinical use of NNRTIs, some guidelines have been elaborated, such as starting treatment with combinations of different compounds at sufficiently high concentrations to effect a pronounced and sustained suppression of the virus. Despite the diversity of the compounds described here and the different viruses at which they are targeted, they have a number of characteristics in common. As they interact with specific viral proteins, the compounds achieve a selective inhibition of the replication of the virus, which, in turn, should be able to develop resistance to the compounds. However, as has been established for the NNRTIs, the problem of viral resistance may be overcome if the compounds are used from the start at sufficiently high doses, which could be reduced if different compounds are combined. For HIV infections, drug treatment regimens should be aimed at reducing the viral load to such an extent that the risk for progression to AIDS will be minimized, if not avoided entirely. This may result in a real "cure" of the disease but not necessarily of the virus infection, and in this sense, HIV disease may be reduced to a dormant infection, reminiscent of the latent herpesvirus infections. Should virus replication resume after a certain time, the armamentarium of effective anti-HIV and anti-herpesvirus compounds now available, if applied at the appropriate dosage regimens, should make the virus return to its dormant state before it has any chance to damage the host. It is unlikely that this strategy would eradicate the virus and thus "cure" the viral infection, but it definitely qualifies as a cure of the disease.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,General Immunology and Microbiology,Epidemiology

Reference194 articles.

1. Metabolic diversity and antiviral activities of acyclic nucleoside phosphonates;Aduma P.;Mol. Pharmacol.,1995

2. The PETT series, a new class of potent nonnucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase;Ahgren C.;Antimicrob. Agents Chemother.,1995

3. On the mechanism of selective inhibition of herpesvirus replication by (E)-5- (2-bromovinyl)-2~-deoxyuridine;Allaudeen H. S.;Proc. Natl. Acad. Sci. USA,1981

4. Comparative activity of selected antiviral compounds against clinical isolates of varicella-zoster virus;Andrei G.;Eur. J. Clin. Microbiol. Infect. Dis.,1995

5. Metabolic fate of (E)-5-(2-bromovinyl)-2~-deoxyuridine in herpes simplex virus- and mock-infected cells;Ayisi N. K.;Antimicrob. Agents Chemother.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3