Affiliation:
1. Laboratory of Biochemical Pharmacology, National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, Bethesda, Maryland 20205
Abstract
The K
1
killer virus (or plasmid) of
Saccharomyces cerevisiae
is a noninfectious double-stranded RNA genome found intracellularly packaged in an icosahedral capsid. This genome codes for a protein toxin and for resistance to that toxin. Defective interfering virus mutants are deletion derivatives of the killer virus double-stranded RNA genome; such mutants are called suppressive. Unlike strains carrying the wild-type genome, strains with these deletion derivatives are neither toxin producers nor toxin resistant. If both the suppressive and the wildtype virus are introduced into the same cell, most progeny become toxin-sensitive nonkillers (J. M. Somers, Genetics
74
:571-579, 1973). Diploids formed by the mating of a killer with a suppressive strain were grown in liquid culture, and RNA was extracted from samples taken up to 41 generations after the mating. The ratio of killer RNA to suppressive RNA decreased with increasing generations; by 41 generations the killer RNA was barely detectable. The copy numbers of the suppressive genome and its parental killer were virtually the same in isogenic strains, as were the growth rates of diploid strains containing either virus alone. Therefore, suppressiveness, not being due to segregation or overgrowth by faster growing segregants, is likely due to preferential replication or maintenance of the suppressive genome. Three suppressive viruses, all derivatives of the same killer virus (T. K. Sweeney et al., Genetics
84:
27-42, 1976), did not coexist stably. The evidence strongly indicates that the largest genome of the three slowly suppressed both of the smaller genomes, showing that larger genomes can suppress smaller ones and that suppression can occur between two suppressives. Of 48 isolates of strains carrying the suppressive viruses, 5 had newly detectable RNA species, all larger than the original suppressive genomes. At least seven genes necessary for maintenance of the wild-type killer virus (
MAK
genes) were needed by a suppressive mutant. No effect of
ski
mutations (affecting regulation of killer virus double-stranded RNA replication) on suppressiveness was observed.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献