Herpes Simplex Virus Type 1 (HSV-1)-Induced Apoptosis in Human Dendritic Cells as a Result of Downregulation of Cellular FLICE-Inhibitory Protein and Reduced Expression of HSV-1 Antiapoptotic Latency-Associated Transcript Sequences

Author:

Kather Angela1,Raftery Martin J.1,Devi-Rao Gayathri2,Lippmann Juliane1,Giese Thomas3,Sandri-Goldin Rozanne M.2,Schönrich Günther1

Affiliation:

1. Institute of Virology, CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany

2. Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, California 92697-4025

3. Institute of Immunology, University of Heidelberg, D-69120 Heidelberg, Germany

Abstract

ABSTRACT Herpes simplex virus type 1 (HSV-1) is one of the most frequent and successful human pathogens. It targets immature dendritic cells (iDCs) to interfere with the antiviral immune response. The mechanisms underlying apoptosis of HSV-1-infected iDCs are not fully understood. Previously, we have shown that HSV-1-induced apoptosis of iDCs is associated with downregulation of the cellular FLICE-inhibitory protein (c-FLIP), a potent inhibitor of caspase-8-mediated apoptosis. In this study, we prove that HSV-1 induces degradation of c-FLIP in a proteasome-independent manner. In addition, by using c-FLIP-specific small interfering RNA (siRNA) we show for the first time that downregulation of c-FLIP expression is sufficient to drive uninfected iDCs into apoptosis, underlining the importance of this molecule for iDC survival. Surprisingly, we also observed virus-induced c-FLIP downregulation in epithelial cells and many other cell types that do not undergo apoptosis after HSV-1 infection. Microarray analyses revealed that HSV-1-encoded latency-associated transcript (LAT) sequences, which can substitute for c-FLIP as an inhibitor of caspase-8-mediated apoptosis, are much less abundant in iDCs as compared to epithelial cells. Finally, iDCs infected with an HSV-1 LAT knockout mutant showed increased apoptosis when compared to iDCs infected with the corresponding wild-type HSV-1. Taken together, our results demonstrate that apoptosis of HSV-1-infected iDCs requires both c-FLIP downregulation and diminished expression of viral LAT.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3