Molecular cloning of integrated Gardner-Rasheed feline sarcoma virus: genetic structure of its cell-derived sequence differs from that of other tyrosine kinase-coding onc genes

Author:

Naharro G,Tronick S R,Rasheed S,Gardner M B,Aaronson S A,Robbins K C

Abstract

Gardner-Rasheed feline sarcoma virus (GR-FeSV) is an acute transforming retrovirus which encodes a gag-onc polyprotein possessing an associated tyrosine kinase activity. The integrated form of this virus, isolated in the Charon 21A strain of bacteriophage lambda, demonstrated an ability to transform NIH/3T3 cells at high efficiency upon transfection. Foci induced by GR-FeSV DNA contained rescuable sarcoma virus and expressed GR-P70, the major GR-FeSV translational product. The localization of long-terminal repeats within the DNA clone made it possible to establish the length of the GR-FeSV provirus as 4.6 kilobase pairs. The analysis of heteroduplexes formed between lambda feline leukemia virus (FeLV) and lambda GR-FeSV DNAs revealed the presence of a 1,700-base-pair FeLV unrelated segment, designated v-fgr, within the GR-FeSV genome. The size of this region was sufficient to encode a protein of approximately 68,000 daltons and was localized immediately downstream of the FeLV gag gene coding sequences present in GR-FeSV. Thus, it is likely that this 1.7-kilobase-pair stretch encodes the onc moiety of GR-P70. Utilizing probes representing v-fgr, we detected homologous sequences in the DNAs of diverse vertebrate species, implying that v-fgr originated from a well-conserved cellular gene. The number of cellular DNA fragments hybridized by v-fgr-derived probes indicated either that proto-fgr is distributed over a very large region of cellular DNA or represents a family of related genes. By molecular hybridization, v-fgr was not directly related to the onc genes of other known retroviruses having associated tyrosine kinase activity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gain-of-function mutations in a member of the Src family kinases cause autoinflammatory bone disease in mice and humans;Proceedings of the National Academy of Sciences;2019-05-28

2. FGR (Gene Name);Encyclopedia of Signaling Molecules;2018

3. The Tumor Pathology of Genetically Engineered Mice: Genomic Pathology;Genetically Engineered Mice for Cancer Research;2011-09-28

4. Broadening the use of antiretroviral therapy: the case for feline leukemia virus;Therapeutics and Clinical Risk Management;2011-03

5. The role of Fyn kinase in the release from metaphase in mammalian oocytes;Molecular and Cellular Endocrinology;2010-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3