Identification of four complementary RNA species in Akabane virus-infected cells

Author:

Pattnaik A K,Abraham G

Abstract

The analysis of RNA extracted from purified Akabane virus demonstrated the presence of three size classes of single-stranded RNAs with sedimentation coefficients of 31S (large, L), 26S (medium, M), and 13S (small, S). Molecular weights of these RNA species were estimated to be 2.15 X 10(6), 1.5 X 10(6), and 0.48 X 10(6) for the L, M, and S RNAs, respectively. Hybridization analysis involving viral genomic RNA and RNA from virus-infected cells resulted in the identification of four virus-specific cRNA species in infected cells. These cRNAs were found to be nonpolyadenylated by their inability to bind to oligodeoxythymidylate-cellulose. Kinetic analysis of cRNA synthesis in infected cells at various times postinfection suggested that cRNA synthesis could be detected as early as 2 h postinfection and that maximal synthesis occurred at 4 to 6 h postinfection. The RNAs synthesized in infected cells could be partially resolved by sucrose density gradient centrifugation. The RNA fraction that cosedimented with the S segment of viral genomic RNA yielded two duplex RNA species when hybridized with viral genomic RNA, suggesting the presence of two small cRNA species. Specific hybridization with individual viral genomic RNAs confirmed that two species of cRNA are coded by the S RNA segment. Analysis of cRNA synthesis in the presence of the protein synthesis inhibitors cycloheximide and puromycin indicated that cycloheximide completely inhibited virus-specific RNA synthesis early and late in infection, whereas a very low level of synthesis occurred in the presence of puromycin. The inhibitory effects of these drugs were found to be reversible when the drugs were washed from the cells. It is concluded that continued protein synthesis is required for cRNA synthesis to proceed in Akabane virus-infected cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference28 articles.

1. The effect of ultraviolet radiation on the primary transcription of influenza virus messenger RNAs;Abraham G.;Virology,1979

2. Primary transcription of the influenza virus genome in permissive cells;Bean W. J.;Virology,1973

3. Genetic potential of bunyaviruses;Bishop D. H. L.;Curr. Top. Microbiol. Immunol.,1978

4. Recombination and gene coding assignments of bunyaviruses and arenaviruses;Bishop D. H. L.;Ann. N. Y. Acad. Sci.,1980

5. Bunyaviridae;Bishop D. H. L.;Intervirology,1980

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3