Transcriptional organization of bovine papillomavirus type 1

Author:

Engel L W,Heilman C A,Howley P M

Abstract

Multiple bovine papillomavirus type 1 (BPV-1)-specific polyadenylated RNA species in a BPV-1-infected bovine fibropapilloma were identified and mapped. All of the RNA species were transcribed from the same DNA strand of the BPV-1 genome. Five RNA species previously identified in BPV-1-transformed mouse cells were also present in the bovine fibropapilloma. These five species measured 1,050, 1,150, 1,700, 3,800, and 4,050 bases, mapped within the 69% transforming segment of the BPV-1 genome, and shared a 3' coterminus at 0.53 map units (m.u.). The 5' ends of the bodies of these distinct transcripts were located at ca. 0.03, 0.09, 0.34, 0.39, and 0.41 m.u. Additional polyadenylated RNA species not present in BPV-1-transformed mouse cells were specific for the BPV-1-infected bovine fibropapilloma and measured 1,700, 3,700, 3,800, 6,700, and 8,000 bases. These wart-specific species shared a 3' coterminus at 0.90 m.u. The 5' termini of the bodies of the 1,700- and 3,800-base species mapped at 0.71 and 0.42 m.u., respectively. Exonuclease VII analysis failed to reveal any internal splicing in these two species; however, the presence of small remote 5' leader sequences could not be ruled out. The 3,700-base species hybridized to DNA fragments from the 69% transforming segment as well as from the 31% nontransforming segment of the BPV-1 genome; however, this species was not precisely mapped. The 5' termini of the two largest RNA species (6,700 and 8,000 bases in size) were located at ca. 0.01 and 0.90 m.u., respectively. Since the 5' ends of these mapped adjacent to a TATAAA sequence which could possibly serve as an element of a transcriptional promoter, it is possible that one or both of these species represent nonspliced precursor RNA molecules.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3