Cloning and characterization of the S fimbrial adhesin II complex of an Escherichia coli O18:K1 meningitis isolate

Author:

Hacker J1,Kestler H1,Hoschützky H1,Jann K1,Lottspeich F1,Korhonen T K1

Affiliation:

1. Lehrstuhl für Mikrobiologie im Theodor-Boveri-Institut, Universität Würzburg, Germany.

Abstract

S fimbrial adhesins (Sfa), which are able to recognize sialic acid-containing receptors on eukaryotic cells, are produced by Escherichia coli strains causing urinary tract infections or newborn meningitis. We recently described the cloning and molecular characterization of a determinant, termed sfaI, from the chromosome of an E. coli urinary tract infection strain. Here we present data concerning a S fimbria-specific gene cluster, designated sfaII, of an E. coli newborn meningitis strain. Like the SfaI complex, SfaII consists of the major subunit protein SfaA (16 kDa) and the minor subunit proteins SfaG (17 kDa), SfaS (15 kDa), and SfaH (29 kDa). The genes encoding the subunit proteins of SfaII were identified and sequenced. Their protein sequences were calculated from the DNA sequences and compared with those of the SfaI complex subunits. Although the sequences of the two major SfaA subunits differed markedly, the sequences of the minor subunits showed only a few amino acid exchanges (SfaG, SfaH) or were completely identical (SfaS). The introduction of a site-specific mutation into the gene sfaSII and subsequent analysis of an SfaS-negative clone indicated that sfaSII codes for the sialic acid-specific adhesin of the meninigitis isolate. These data were confirmed by the isolation and characterization of the SfaSII protein and the determination of its N-terminal amino acid sequence. The identity between the sialic acid-specific adhesins of SfaI and SfaII revealed that differences between the two Sfa complexes with respect to their capacities to agglutinate erythrocytes must result from sequence alterations of subunit proteins other than SfaS.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3