Mapping regions of the matrix protein of vesicular stomatitis virus which bind to ribonucleocapsids, liposomes, and monoclonal antibodies

Author:

Ogden J R,Pal R,Wagner R R

Abstract

The matrix (M) protein of vesicular stomatitis virus (VSV) appears to function as a bridge between the ribonucleocapsid (RNP) core and the envelope in assembly of the virion. Two such properties would necessitate at least one site for interaction with the nucleocapsid and one with the envelope. In this study M protein was found to mediate the in vitro binding to RNP cores of phospholipid vesicles, representing membrane structures. The M protein could bind initially to either the vesicles or the RNP cores to promote RNP-vesicle association. A trypsin-resistant fragment (MT) of M protein, missing the initial 43 amino acids from its amino terminus, reconstituted with acidic phospholipid vesicles with the same binding efficiency as did whole M protein, suggesting that the carboxy-terminal 81% retained those regions of the M protein which interact with a lipid bilayer. The MT protein, however, was considerably less efficient than intact M protein as an inhibitor of in vitro virus transcription; almost 2.5-fold more MT protein than intact M protein was required for 50% inhibition of VSV transcription, indicating that a site for interaction with the RNP core may have been lost. A monoclonal antibody which is able to reverse the in vitro inhibition of transcription by M protein did not react by immunoblotting with MT protein. Partial tryptic digests of the M protein probed with this monoclonal antibody indicated that epitope 1 lies between amino acid residues 18 and 43. This region appears to be a site that promotes interaction of the M protein with the RNP core of VSV. Monoclonal antibodies to epitopes 2 and 3, which exhibit some overlap in binding to M protein but do not reverse transcription inhibition, were mapped by cleavage with N-chlorosuccinimide at regions in a carboxy direction from epitope 1.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3