Recognition of Altered Deoxyribonucleic Acid in Recombination

Author:

Helling Robert B.1

Affiliation:

1. Department of Botany, University of Michigan, Ann Arbor, Michigan 48104

Abstract

Kinetics of inactivation of transduction by phage P1bt which had been treated with ultraviolet light (UV) or nitrous acid (NA) was examined. With Escherichia coli B/r (radiation-resistant), low doses of UV increased transduction frequency, but the frequency was exponentially inactivated by higher doses. Little initial stimulus was observed in strain B s−1 (radiation-sensitive). The final rate of decay was the same as in B/r. The initial stimulus of transduction in B/r was probably a consequence of increased recombination resulting from dark repair. It was estimated that another nucleotide within 1000 nucleotide pairs had to be damaged by UV to prevent a given nucleotide from successful transduction. The NA dose response was the same for the two strains. An initial stimulus of transduction was followed by exponential decline. The UV-repair enzymes missing in B s−1 were not required for repair of NA-induced damage to transducing or lytic phage DNA. Low recovery of new mutations in the transductants showed that mutagen-induced damage to transducing DNA was excluded from recombinant chromosomes. The few recovered mutants may have resulted from “normal” error in recombination.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3