Inhibition of RNA synthesis in mouse myeloma cells infected with vesicular stomatitis virus

Author:

Weck P K,Wagner R R

Abstract

Infection of mouse myeloma cells (MPC-11) with vesicular stomatitis (VS) virus resulted in rapid and marked reduction in cellular RNA synthesis considerably before cell viability was compromised. Mouse myeloma cells responded maximally to viral infection at a multiplicity of 1 and were considerably more se;sitive to shut-off of RNA synthesis than were mouse L cells or BHK-21 cells. This inhibition of cellular RNA synthesis was shown not to be caused by differential membrane permeability of infected and uninfected MPC-11 cells to [3H]uridine, nor was it due to greater degradation of previously synthesized RNA. VS viral infection appeared not to impede transport of newly synthesized nuclear RNA to the cytoplasm; moreover, infected cells accumulated polyadenylated mRNA at the same rate as did uninfected cells. Polyacrylamide gel electrophoresis of newly synthesized nuclear RNA demonstrated that the polydisperse nature and size distribution were not affected by VS viral infection. Isolated nuclei of infected MPC-11 cells also inhibited greatly impaired capacity to synthesize RNA despite the absence of cytoplasmic factors. Infected-cell cytosol did not inhibit transcription by uninfected-cell nuclei, nor did uninfected-cell cytosol reverse viral inhibition of nuclear transcription. Studies with alpha-amanitin revealed that VS viral infection inhibited the activity of polymerases I, II, and III, but only polymerase II was affected progressively throughout infection and to a much greater extent. These data suggest that, even at low multiplicities of infection, VS virus rapidly shuts off cellular RNA synthesis at the level of nuclear transcription.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3