Methicillin-Resistant Staphylococcus aureus Phage Plaque Size Enhancement Using Sublethal Concentrations of Antibiotics

Author:

Kaur Sandeep1,Harjai Kusum1,Chhibber Sanjay1

Affiliation:

1. Department of Microbiology, Panjab University, Chandigarh, India

Abstract

ABSTRACT Phage therapy presents an alternative approach against the emerging methicillin-resistant Staphylococcus aureus (MRSA) threat. Some of the problems encountered during isolation of MRSA phages include the high prevalence of enteric phages in natural sources, nonspecific absorption of viable phage, and the formation of pinpoint or tiny plaques. The phage isolated in this study, MR-5, also formed tiny plaques against its host S. aureus ATCC 43300 (MRSA), making its detection and enumeration difficult. An improved method of increasing the plaque size of MRSA phage by incorporating sublethal concentrations of three different classes of antibiotics (inhibitors of protein synthesis) in the classical double-layer agar (DLA) method was investigated. The β-lactam and quinolone antibiotics commonly employed in earlier studies for increasing the plaque size did not show any significant effect on the plaque size of isolated MR-5 phage. Linezolid (oxazolidinone class), tetracycline, and ketolide antibiotics brought significant enhancements (3 times the original size) in the plaque size of MR-5 phage. Prior treatment with these antibiotics resulted in significant reductions in the time of adsorption and the latent period of MR-5 phage. To rule out whether the action of linezolid (which brought the maximum increase in plaque size) was specific for a single phage only, its effect on the plaque size of seven other S. aureus -specific phages was also assessed. Significant enhancements in the plaque size of these phages were observed. These results indicate that this modification can therefore safely be incorporated in the traditional DLA overlay method to search for new MRSA-virulent phages.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference36 articles.

1. Bacteriophage evolution given spatial constraint;Abedon ST;J. Theor. Biol.,2007

2. Optimizing bacteriophage plaque fecundity;Abedon ST;J. Theor. Biol.,2007

3. Bacteriophage plaques: theory and analysis;Abedon ST;Methods Mol. Biol.,2009

4. A comparative study of the inactivation of a bacteriophage by immune serum and by bacterial polysaccharides;Burnet FM;Aust. J. Exp. Biol. Med. Sci.,1937

5. Phage-inactivating agent of bacterial extracts;Burnet FM;J. Pathol. Bacteriol.,1934

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3