Affiliation:
1. Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
Abstract
ABSTRACT
Two pathways have been identified for peroxisome formation: (i) growth and division and (ii) de novo synthesis. Recent experiments determined that peroxisomes originate at the endoplasmic reticulum (ER). Although many proteins have been implicated in the peroxisome biogenic program, no proteins in the eukaryotic secretory pathway have been identified as having roles in peroxisome formation. Using the yeast
Saccharomyces cerevisiae
regulatable
Tet
promoter Hughes clone collection, we found that repression of the ER-associated secretory proteins Sec20p and Sec39p resulted in mislocalization of the peroxisomal matrix protein chimera Pot1p-green fluorescent protein (GFP) to the cytosol. Likewise, the peroxisomal membrane protein chimera Pex3p-GFP localized to tubular-vesicular structures in cells suppressed for Sec20p, Sec39p, and Dsl1p, which form a complex at the ER. Loss of Sec39p attenuated formation of Pex3p-derived peroxisomal structures following galactose induction of Pex3p-GFP expression from the
GAL1
promoter. Expression of Sec20p, Sec39p, and Dsl1p was moderately increased in yeast grown under conditions that proliferate peroxisomes, and Sec20p, Sec39p, and Dsl1p were found to cofractionate with peroxisomes and colocalize with Pex3p-monomeric red fluorescent protein under these conditions. Our results show that
SEC20
,
SEC39
, and
DSL1
are essential secretory genes involved in the early stages of peroxisome assembly, and this work is the first to identify and characterize an ER-associated secretory machinery involved in peroxisome biogenesis.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献