Constitutive Secretion in Tetrahymena thermophila

Author:

Madinger Catherine L.1,Collins Kathleen23,Fields Lauren G.1,Taron Christopher H.1,Benner Jack S.1

Affiliation:

1. New England Biolabs, Inc., Ipswich, Massachusetts 01938;

2. Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200; and

3. Tetragenetics, Inc., Cambridge, Massachusetts 02142

Abstract

ABSTRACT The growth, survival, and life cycle progression of the freshwater ciliated protozoan Tetrahymena thermophila are responsive to protein signals thought to be released by constitutive secretion. In addition to providing insights about ciliate communication, studies of constitutive secretion are of interest for evaluating the utility of T. thermophila as a platform for the expression of secreted protein therapeutics. For these reasons, we undertook an unbiased investigation of T. thermophila secreted proteins using wild-type and secretion mutant strains. Extensive tandem mass spectrometry analyses of secretome samples were performed. We identified a total of 207 secretome proteins, most of which were not detected in a set of abundant whole-cell protein identifications. Numerous proteases and other hydrolases were secreted from cells grown in rich medium but not cells transferred to a nutrient starvation condition. On the other hand, we detected the starvation-enhanced secretion of a small number of cytosolic proteins, suggestive of an exosome-like pathway in T. thermophila . Subsets of proteins from the T. thermophila regulated secretion pathway were detected with differential representation across strains and culture conditions. Finally, many secretome proteins had a predicted N-terminal signal sequence but no other annotated characteristic or functional classification. Our work provides the first comprehensive analysis of secreted proteins in T. thermophila and establishes the groundwork for future studies of constitutive protein secretion biology and biotechnology in ciliates.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3