Evidence of Antibiotic Resistance Gene Silencing in Escherichia coli

Author:

Enne Virve I.1,Delsol Anne A.2,Roe John M.2,Bennett Peter M.1

Affiliation:

1. Department of Cellular and Molecular Medicine, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom

2. Division of Farm Animal Science, Department of Clinical Veterinary Science, University of Bristol, Langford BS40 5DU, United Kingdom

Abstract

ABSTRACT The possibility that unexpressed antibiotic resistance genes are carried by bacterial genomes is seldom investigated. Potential silencing of the resistance genes bla OXA-2 , aadA1 , sul1 , and tetA carried on the plasmid pVE46 in a recent porcine isolate of Escherichia coli was investigated following oral inoculation of the strain into organic piglets. A small proportion of isolates recovered from feces did not express one or more resistance genes, despite retaining the pVE46 plasmid. Different combinations of unexpressed resistance genes were observed, and 12 representative isolates were selected for further study. Surprisingly, in most cases the resistance genes and their promoters, although not expressed, were intact, with fully wild-type sequences. Apart from four isolates exhibiting intermediate-level tetracycline resistance, no mRNA for the unexpressed genes was detected. Silencing of resistance genes was reversible at low frequencies between 10 −6 and 10 −10 . Introduction of the plasmid from silenced isolates to another strain restored expression, indicating that gene silencing was a property of the host chromosome rather than the plasmid itself. When the same recent porcine E. coli strain carrying the unrelated plasmid RP1 was inoculated into piglets, three isolates (of 9,492) that no longer expressed RP1-encoded resistance genes were recovered. As with pVE46, in most cases the coding sequences and promoter regions of these genes were found to be intact, but they were not transcribed. Such gene silencing indicates a previously unrecognized form of transcriptional control that overrides standard expression signals to shut down gene expression. These findings suggest that unexpressed resistance genes may occur in the wild and hence may have clinical implications.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3