Cell surface redox potential as a mechanism of defense against photosensitizers in fungi

Author:

Sollod C C1,Jenns A E1,Daub M E1

Affiliation:

1. Department of Plant Pathology, North Carolina State University, Raleigh 27695-7616.

Abstract

The phytotoxin cercosporin, a singlet oxygen-generating photosensitizer, is toxic to plants, mice, and many fungi, yet the fungi that produce it, Cercospora spp., are resistant. We hypothesize that resistance to cercosporin may result from a reducing environment at the cell surface. Twenty tetrazolium dyes differing in redox potential were used as indicators of cell surface redox potential of seven fungal species differing in resistance to cercosporin. Resistant fungi were able to reduce significantly more dyes than were sensitive fungi. A correlation between dye reduction and cercosporin resistance was also observed when resistance levels of Cercospora species were manipulated by growth on different media. The addition of the reducing agents ascorbate, cysteine, and reduced glutathione (GSH) to growth media decreased cercosporin toxicity for sensitive fungi. None of these agents directly reduced cercosporin at the concentrations at which they protected fungi. Spectral and thin-layer chromatographic analyses of cercosporin solutions containing the different reducing agents indicated that GSH, but not cysteine or ascorbate, reacted with cercosporin. Resistant and sensitive fungi did not differ in endogenous levels of cysteine, GSH, or total thiols. On the basis of data from this and other studies, this report presents a model which proposes that cercosporin resistance results from the production of reducing power at the surfaces of resistant cells, leading to transient reduction and detoxification of the cercosporin molecule.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference30 articles.

1. The use of eight different tetrazolium salts for a quantitative study of pentose shunt dehydrogenation;Altman F. P.;Histochemie,1969

2. Tetrazolium salts and formazans;Altman F. P.;Prog. Histochem. Cytochem.,1976

3. Glutathione synthesis in response to captan: a possible mechanism for resistance of Botrytis cinerea to the fungicide;Barak E.;Pestic. Biochem. Physiol.,1984

4. Physical quenchers of singlet molecular oxygen;Bellus D.;Adv. Photochem.,1979

5. Plasma membrane oxidoreductases;Crane F. L.;Crit. Rev. Plant Sci.,1989

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3