Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis

Author:

de Ruyter P G1,Kuipers O P1,Beerthuyzen M M1,van Alen-Boerrigter I1,de Vos W M1

Affiliation:

1. Department of Biophysical Chemistry, Netherlands Institute for Dairy Research, Ede The Netherlands.

Abstract

The promoters in the nisin gene cluster nisABTCIPRKFEG of Lactococcus lactis were characterized by primer extension and transcriptional fusions to the Escherichia coli promoterless beta-glucuronidase gene (gusA). Three promoters preceding the nisA, nisR, and nisF genes, which all give rise to gusA expression in the nisin-producing strain L. lactis NZ9700, were identified. The transcriptional autoregulation of nisA by signal transduction involving the sensor histidine kinase NisK and the response regulator NisR has been demonstrated previously (0. P. Kuipers, M. M. Beerthuyzen, P. G. G. A. de Ruyter, E. J. Luesink, and W. M. de Vos, J. Biol. Chem. 270: 27299-27304, 1995), and therefore the possible nisin-dependent expression of gusA under control of the nisR and nisF promoters was also investigated. The nisR promoter was shown to direct nisin-independent gusA expression in L. lactis MG 1363, which is a nisin-transposon- and plasmid-free strain. L. lactis NZ9800, which does not produce nisin because of a deletion in the nisA gene, containing the nisF-gusA fusion plasmid, gave rise to beta-glucuronidase production only after induction by nisin. A similar regulation was found in L. lactis NZ3900, which contains a single copy of the nisR and nisK genes but no other genes of the nisin gene cluster. In contrast, when the nisK gene was disrupted, no beta-glucuronidase activity directed by the nisF promoter could be detected even after induction with nisin. These results show that, like the nisA promoter, the nisF promoter is nisin inducible. The nisF and nisA promoter sequences have significant similarities and contain a conserved region that could be important for transcriptional control.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3