Identification and characterization of the origin of conjugative transfer (oriT) and a gene (nes) encoding a single-stranded endonuclease on the staphylococcal plasmid pGO1

Author:

Climo M W1,Sharma V K1,Archer G L1

Affiliation:

1. Department of Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0049, USA.

Abstract

The genes mediating the conjugative transfer of the 52-kb staphylococcal plasmid pGO1 are within a 14.4-kb gene cluster designated trs. However, a clone containing trs alone cannot transfer independently and no candidate oriT has been found within or contiguous to trs. In this study, we identified a 1,987-bp open reading frame (ORF) 24 kb 3' and 13 kb 5' to trs that was essential for conjugative transfer: transposon insertions into the ORF abolished transfer and a plasmid containing the ORF could complement these transposon-inactivated pGO1 mutants for transfer. Analysis of the nucleotide sequence of this ORF revealed significant homology between the amino terminus of its predicted protein and those of several single-stranded endonucleases. In addition, a 12-bp DNA sequence located 100 bp 5' to the ORF's translational start site was identical to the oriT sequences of the conjugative or mobilizable plasmids RSF1010, pTF1, R1162, pSC101, and pIP501. The ability of the ORF, designated nes (for nicking enzyme of staphylococci), to generate a single-stranded nick at the oriT was demonstrated in Escherichia coli by alkaline gel and DNA sequence analysis of open circular plasmid DNA. Plasmids that could be converted to the open circular form by the presence of oriT and nes could also be mobilized at high frequency into Staphylococcus aureus recipients with a second plasmid containing only trs. We propose that the 14.4 kb of trs and the approximately 2.2 kb of the oriT-nes region, coupled with an origin of replication, make up the minimal staphylococcal conjugative replicon.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3