Translation of the adhE transcript to produce ethanol dehydrogenase requires RNase III cleavage in Escherichia coli

Author:

Aristarkhov A1,Mikulskis A1,Belasco J G1,Lin E C1

Affiliation:

1. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

Previous studies have shown that the adhE gene, which encodes a multifunctional protein with ethanol dehydrogenase activity, is under transcriptional regulation. The level of dehydrogenase activity in cells grown fermentatively is about 10-fold higher than that in cells grown aerobically. In these studies, we mapped the promoter to a region well upstream of the protein-coding region of adhE. Unexpectedly, in mutants lacking the endoribonuclease RNase III, no significant ethanol dehydrogenase activity was detected in cells grown anaerobically on rich (Luria-Bertani) medium supplemented with glucose, even though adhE mRNA levels were high. Indeed, like Delta adhE mutants, strains lacking RNase III failed to grow fermentatively on glucose but grew on the more oxidized carbon source glucuronate. Computer-generated secondary structures of the putative 5' untranslated region of adhE mRNA suggest that the ribosome binding site is occluded by intramolecular base pairing. It seems likely that cleavage of this secondary structure by RNase III is necessary for efficient translation initiation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3