Affiliation:
1. Centre d'Ingénierie des Protéines, Université de Liège, Belgium.
Abstract
The ftsI-encoded multimodular class B penicillin-binding protein 3 (PBP3) is a key element of the cell septation machinery of Escherichia coli. Altered ftsI genes were overexpressed, and the gene products were analyzed with respect to the level of production, stability, penicillin affinity, and cell septation activity. In contrast to the serine beta-lactamases and low-molecular-mass PBPs which are autonomous folding entities, the S-259-to-V-577 penicillin-binding module of M-1-to-V-577 PBP3 lacks the amino acid sequence information for correct folding. The missing piece of information is provided by the associated G-57-to-E-258 non-penicillin-binding module which functions as a noncleaved, pseudointramolecular chaperone. Key elements of the folding information reside within the motif 1-containing R-60-to-W-110 polypeptide segment and within G-188-to-D-197 motif 3 of the n-PB module. The intermodule interaction is discussed in the light of the known three-dimensional structure (at 3.5-A [0.35-nm] resolution) of the analogous class B PBP2x of Streptococcus pneumoniae (S. Pares, N. Mouz, Y. Pétillot, R. Hakenbeck, and O. Dideberg, Nature Struct. Biol. 3:284-289, 1996). Correct folding and adoption of a stable penicillin-binding conformation are necessary but not sufficient to confer cell septation activity to PBP3 in exponentially growing cells. The in vivo activity of PBP3 also depends on the M-1-to-E-56 amino-terminal module which encompasses the cytosol, the membrane, and the periplasm and which functions as a noncleaved pseudo-signal peptide.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献