Affiliation:
1. Department of Biology, University of Utah, Salt Lake City, 84112, USA.
Abstract
A role for the RecF, RecJ, and SbcB proteins in the RecBCD-dependent recombination pathway is suggested on the basis of the effect of null recF, recJ, and sbcB mutations in Salmonella typhimurium on a "short-homology" P22 transduction assay. The assay requires recombination within short (approximately 3-kb) sequences that flank the selected marker and lie at the ends of the transduced fragment. Since these ends are subject to exonucleolytic degradation, the assay may demand rapid recombination by requiring that the exchange be completed before the essential recombining sequences are degraded. In this assay, recF, recJ, and sbcB null mutations, tested individually, cause a small decrease in recombinant recovery but all pairwise combinations of these mutations cause a 10- to 30-fold reduction. In a recD mutant recipient, which shows increased recombination, these pairwise mutation combinations cause a 100-fold reduction in recombinant recovery. In a standard transduction assay (about 20 kb of flanking sequence), recF, recJ, and sbcB mutations have a very small effect on recombinant frequency. We suggest that these three proteins promote a rate-limiting step in the RecBC-dependent recombination process. The above results were obtained with a lysogenic recipient strain which represses expression of superinfecting phage genomes and minimizes the contribution of phage recombination functions. When a nonlysogenic recipient strain is used, coinfecting phage genomes express functions that alter the genetic requirements for recombination in the short-homology assay.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献