Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by the coronavirus transmissible gastroenteritis virus

Author:

Laude H1,Gelfi J1,Lavenant L1,Charley B1

Affiliation:

1. Laboratoire de Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.

Abstract

Transmissible gastroenteritis virus, an enteropathogenic coronavirus of swine, is a potent inducer of alpha interferon (IFN-alpha) both in vitro and in vivo. Previous studies have shown that virus-infected fixed cells or viral suspensions were able to induce an early and strong IFN-alpha synthesis by naive lymphocytes. Two monoclonal antibodies directed against the viral membrane glycoprotein M (29,000; formerly E1) were found to markedly inhibit virus-induced IFN production, thus assigning to M protein a potential effector role in this phenomenon (B. Charley and H. Laude, J. Virol. 62:8-11, 1988). The present report describes the selection and characterization of a collection of 125 mutant viruses which escaped complement-mediated neutralization by two IFN induction-blocking anti-M protein monoclonal antibodies. Two of these mutants, designated H92 and dm49-4, were found to exhibit a markedly reduced interferogenic activity. IFN synthesis by lymphocytes incubated with purified suspensions of these mutants was 30- to 300-fold lower than that of the parental virus. The transcription of IFN-alpha genes following induction by each mutant was decreased proportionally, as evidenced by Northern (RNA) blot analysis. The sequence of the M gene of 20 complement-mediated neutralization-resistant mutants, including the 2 defective mutants, was determined by direct sequencing of genome RNA. Thirteen distinct amino acid changes were predicted, all located at positions 6 to 22 from the N terminus of the mature M protein and within the putative ectodomain of the molecule. Two substitutions, Thr-17 to Ile and Ser-19 to Pro, were assumed to generate the defective phenotypes of mutants dm49-4 and H92, respectively. The alteration of an Asn-Ser-Thr sequence in dm49-4 virus led to the synthesis of an M protein devoid of a glycan side chain, which suggests a possible involvement of this structure in IFN induction. Overall, these data supported the view that an interferogenic determinant resides in the N-terminal, exposed part of the molecule and provided further evidence for the direct role of M protein in the induction of IFN-alpha by transmissible gastroenteritis virus. The acronym VIP (viral interferogenic protein) is proposed as a designation for this particular class of proteins.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3